(1) Sholokh, M.; Sharma, R.; Shin, D.; Das, R.; Zaporozhets, O. A.; Tor, Y.; Mély, Y. Conquering 2-Aminopurine’s Deficiencies: Highly Emissive Isomorphic Guanosine Surrogate Faithfully Monitors Guanosine Conformation and Dynamics in DNA. J. Am. Chem. Soc. 2015, 137 (9), 3185–3188. https://doi.org/10.1021/ja513107r.
(2) Sholokh, M.; Improta, R.; Mori, M.; Sharma, R.; Kenfack, C.; Shin, D.; Voltz, K.; Stote, R. H.; Zaporozhets, O. A.; Botta, M.; Tor, Y.; Mély, Y. Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels. Angew. Chem. Int. Ed. 2016, 55 (28), 7974–7978. https://doi.org/10.1002/anie.201601688.
(3) Martinez‐Fernandez, L.; Gavvala, K.; Sharma, R.; Didier, P.; Richert, L.; Segarra Martì, J.; Mori, M.; Mely, Y.; Improta, R. Excited‐State Dynamics of Thienoguanosine, an Isomorphic Highly Fluorescent Analogue of Guanosine. Chem. – Eur. J. 2019, 25 (30), 7375–7386. https://doi.org/10.1002/chem.201900677.
(4) Didier, P.; Kuchlyan, J.; Martinez-Fernandez, L.; Gosset, P.; Léonard, J.; Tor, Y.; Improta, R.; Mély, Y. Deciphering the PH-Dependence of Ground- and Excited-State Equilibria of Thienoguanine. Phys. Chem. Chem. Phys. 2020, 22 (14), 7381–7391. https://doi.org/10.1039/C9CP06931C.
(5) Kuchlyan, J.; Martinez-Fernandez, L.; Mori, M.; Gavvala, K.; Ciaco, S.; Boudier, C.; Richert, L.; Didier, P.; Tor, Y.; Improta, R.; Mély, Y. What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe? J. Am. Chem. Soc. 2020, jacs.0c06165. https://doi.org/10.1021/jacs.0c06165.
(6) Sholokh, M.; Sharma, R.; Grytsyk, N.; Zaghzi, L.; Postupalenko, V. Y.; Dziuba, D.; Barthes, N. P. F.; Michel, B. Y.; Boudier, C.; Zaporozhets, O. A.; Tor, Y.; Burger, A.; Mély, Y. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chem. - Eur. J. 2018, 24 (52), 13850–13861. https://doi.org/10.1002/chem.201802297.
(7) Kilin, V.; Gavvala, K.; Barthes, N. P. F.; Michel, B. Y.; Shin, D.; Boudier, C.; Mauffret, O.; Yashchuk, V.; Mousli, M.; Ruff, M.; Granger, F.; Eiler, S.; Bronner, C.; Tor, Y.; Burger, A.; Mély, Y. Dynamics of Methylated Cytosine Flipping by UHRF1. J. Am. Chem. Soc. 2017, 139 (6), 2520–2528. https://doi.org/10.1021/jacs.7b00154.
(8) Ghose, A.; Rebarz, M.; Maltsev, O. V.; Hintermann, L.; Ruckebusch, C.; Fron, E.; Hofkens, J.; Mély, Y.; Naumov, P.; Sliwa, M.; Didier, P. Emission Properties of Oxyluciferin and Its Derivatives in Water: Revealing the Nature of the Emissive Species in Firefly Bioluminescence. J. Phys. Chem. B 2015, 119 (6), 2638–2649. https://doi.org/10.1021/jp508905m.
(9) Ghose, A.; Maltsev, O. V.; Humbert, N.; Hintermann, L.; Arntz, Y.; Naumov, P.; Mély, Y.; Didier, P. Oxyluciferin Derivatives: A Toolbox of Environment-Sensitive Fluorescence Probes for Molecular and Cellular Applications. J. Phys. Chem. B 2017, 121 (7), 1566–1575. https://doi.org/10.1021/acs.jpcb.6b12616.
(10) Gosset, P.; Taupier, G.; Crégut, O.; Brazard, J.; Mély, Y.; Dorkenoo, K.-D.; Léonard, J.; Didier, P. Excited-State Proton Transfer in Oxyluciferin and Its Analogues. J. Phys. Chem. Lett. 2020, 11 (9), 3653–3659. https://doi.org/10.1021/acs.jpclett.0c00839.
(11) De Almeida Barbosa, N. M.; Gosset, P.; Real, E.; Ledentu, V.; Didier, P.; Ferré, N. PH-Dependent Absorption Spectrum of Oxyluciferin Analogues in the Active Site of Firefly Luciferase. Phys. Chem. Chem. Phys. 2020, 10.1039.D0CP02514C. https://doi.org/10.1039/D0CP02514C.
(12) García-Iriepa, C.; Gosset, P.; Berraud-Pache, R.; Zemmouche, M.; Taupier, G.; Dorkenoo, K. D.; Didier, P.; Léonard, J.; Ferré, N.; Navizet, I. Simulation and Analysis of the Spectroscopic Properties of Oxyluciferin and Its Analogues in Water. J. Chem. Theory Comput. 2018, 14 (4), 2117–2126. https://doi.org/10.1021/acs.jctc.7b01240.
(13) Manuel de Almeida Barbosa, N.; Zemmouche, M.; Gosset, P.; García‐Iriepa, C.; Ledentu, V.; Navizet, I.; Didier, P.; Ferré, N. PH‐Dependent Absorption Spectrum of Oxyluciferin Analogues in the Presence of Adenosine Monophosphate. ChemPhotoChem 2019, 3 (12), 1219–1230. https://doi.org/10.1002/cptc.201900150.
(14) Dukhno, O.; Przybilla, F.; Collot, M.; Klymchenko, A.; Pivovarenko, V.; Buchner, M.; Muhr, V.; Hirsch, T.; Mély, Y. Quantitative Assessment of Energy Transfer in Upconverting Nanoparticles Grafted with Organic Dyes. Nanoscale 2017, 9 (33), 11994–12004. https://doi.org/10.1039/C6NR09706E.
(15) Dukhno, O.; Przybilla, F.; Muhr, V.; Buchner, M.; Hirsch, T.; Mély, Y. Time-Dependent Luminescence Loss for Individual Upconversion Nanoparticles upon Dilution in Aqueous Solution. Nanoscale 2018, 10 (34), 15904–15910. https://doi.org/10.1039/C8NR03892A.
(16) Lysova, I.; Spiegelhalter, C.; Réal, E.; Zgheib, S.; Anton, H.; Mély, Y. ReAsH/Tetracystein-Based Correlative Light-Electron Microscopy for HIV-1 Imaging during the Early Stages of Infection. Methods Appl. Fluoresc. 2018, 6 (4), 045001. https://doi.org/10.1088/2050-6120/aacec1.
(17) Glushonkov, O.; Réal, E.; Boutant, E.; Mély, Y.; Didier, P. Optimized Protocol for Combined PALM-DSTORM Imaging. Sci. Rep. 2018, 8 (1), 8749. doi.org/10.1038/s41598-018-27059-z.
(18) Godet, J.; Mély, Y. Exploring Protein–Protein Interactions with Large Differences in Protein Expression Levels Using FLIM-FRET. Methods Appl. Fluoresc. 2019, 8 (1), 014007. https://doi.org/10.1088/2050-6120/ab5dd2.
(19) Gasser, V.; Malrieu, M.; Forster, A.; Mély, Y.; Schalk, I. J.; Godet, J. In Cellulo FRET-FLIM and Single Molecule Tracking Reveal the Supra-Molecular Organization of the Pyoverdine Bio-Synthetic Enzymes in Pseudomonas Aeruginosa. Q. Rev. Biophys. 2020, 53, e1. https://doi.org/10.1017/S0033583519000155.
(20) Kilin, V.; Glushonkov, O.; Herdly, L.; Klymchenko, A.; Richert, L.; Mely, Y. Fluorescence Lifetime Imaging of Membrane Lipid Order with a Ratiometric Fluorescent Probe. Biophys. J. 2015, 108 (10), 2521–2531. https://doi.org/10.1016/j.bpj.2015.04.003.
(21) El Meshri, S. E.; Dujardin, D.; Godet, J.; Richert, L.; Boudier, C.; Darlix, J. L.; Didier, P.; Mély, Y.; de Rocquigny, H. Role of the Nucleocapsid Domain in HIV-1 Gag Oligomerization and Trafficking to the Plasma Membrane: A Fluorescence Lifetime Imaging Microscopy Investigation. J. Mol. Biol. 2015, 427 (6), 1480–1494. https://doi.org/10.1016/j.jmb.2015.01.015.
(22) Richert, L.; Humbert, N.; Larquet, E.; Girerd-Chambaz, Y.; Manin, C.; Ronzon, F.; Mély, Y. Fluorescence Correlation Spectroscopy as a Sensitive and Useful Tool for Revealing Potential Overlaps between the Epitopes of Monoclonal Antibodies on Viral Particles. mAbs 2016, 8 (7), 1235–1244. https://doi.org/10.1080/19420862.2016.1212148.
(23) Sych, T.; Schubert, T.; Vauchelles, R.; Madl, J.; Omidvar, R.; Thuenauer, R.; Richert, L.; Mély, Y.; Römer, W. GUV-AP: Multifunctional FIJI-Based Tool for Quantitative Image Analysis of Giant Unilamellar Vesicles. Bioinformatics 2019, 35 (13), 2340–2342. https://doi.org/10.1093/bioinformatics/bty962.
(24) Anton, H.; Taha, N.; Boutant, E.; Richert, L.; Khatter, H.; Klaholz, B.; Rondé, P.; Réal, E.; de Rocquigny, H.; Mély, Y. Investigating the Cellular Distribution and Interactions of HIV-1 Nucleocapsid Protein by Quantitative Fluorescence Microscopy. PLOS ONE 2015, 10 (2), e0116921. https://doi.org/10.1371/journal.pone.0116921.
(25) Sharma, K. K.; Przybilla, F.; Restle, T.; Boudier, C.; Godet, J.; Mély, Y. Reverse Transcriptase in Action: FRET-Based Assay for Monitoring Flipping and Polymerase Activity in Real Time. Anal. Chem. 2015, 87 (15), 7690–7697. https://doi.org/10.1021/acs.analchem.5b01126.
(26) Sharma, K. K.; Przybilla, F.; Restle, T.; Godet, J.; Mély, Y. FRET-Based Assay to Screen Inhibitors of HIV-1 Reverse Transcriptase and Nucleocapsid Protein. Nucleic Acids Res. 2016, 44 (8), e74–e74. https://doi.org/10.1093/nar/gkv1532.